Topic: Connected particles

Day 5 Question 1

Figure 4

A block of wood A of mass 0.5 kg rests on a rough horizontal table and is attached to one end of a light inextensible string. The string passes over a small smooth pulley P fixed at the edge of the table. The other end of the string is attached to a ball B of mass 0.8 kg which hangs freely below the pulley, as shown in Figure 4. The coefficient of friction between A and the table is μ . The system is released from rest with the string taut. After release, B descends a distance of 0.4 m in 0.5 s. Modelling A and B as particles, calculate

(<i>a</i>)	the acceleration of <i>B</i> ,	(3)
(<i>b</i>)	the tension in the string,	(4)
(<i>c</i>)	the value of μ .	(5)
(<i>d</i>)	State how in your calculations you have used the information that the string is inextensible.	(3)

(1)

A particle A of mass 0.8 kg rests on a horizontal table and is attached to one end of a light inextensible string. The string passes over a small smooth pulley P fixed at the edge of the table. The other end of the string is attached to a particle B of mass 1.2 kg which hangs freely below the pulley, as shown in Fig. 4. The system is released from rest with the string taut and with B at a height of 0.6 m above the ground. In the subsequent motion A does not reach P before B reaches the ground. In an initial model of the situation, the table is assumed to be smooth. Using this model, find

(<i>a</i>)	the tension in the string before <i>B</i> reaches the ground,	
		(5)

(b) the time taken by B to reach the ground.

In a refinement of the model, it is assumed that the table is rough and that the coefficient of friction between *A* and the table is $\frac{1}{5}$. Using this refined model,

(c) find the time taken by *B* to reach the ground.

(8)

(3)